重要的事情说三遍。
Practice exam, Practice exam, Practice exam
刷题,刷题,刷题
What do top students do differently? | Douglas Barton |
科学研究发现,
- not IQ
- not work hard
- do Practice exam
少年,你离学霸的距离,就是少刷了一道题。
计划
- 首先,把近些年 last final 做好。
- 然后,复习近些年的midterm。
- 最后,根据做错的题目,阅读slides。
-
考试的时候,永远从最简单的题目,做起。不会的,难得,就留到后面。交卷前,一定检查。
Homogenous and particular solution
练习例子
16.Integration - Chapter 16
16.1 2015 final q5
画图,帮助自己理解。
16.2 2016 MT2 Q1
Basic integration problem。 反求导。
Integrate[10000 - 10 Sqrt[q] - q/10, {q, 0, 16}]
Plot[10000 - 10 Sqrt[q] - q/10, {q, 0, 16}]
18. Slides Chapter 18 - First Order Autonomous Linear Difference Equations
the difference equation
- solve
- 不要背公式
- 一步一步写到5步
- 总结规律,写出close form
- 转换成 $a^t(y_0 - \bar y) + \bar y$
- steady state. $\bar y$
- the stability properties of the variable and steady state
- 和45度线相交的地方,steady state
- 看斜率,$ \frac{d y_{t+1}}{d y_t} $ evaluated at SS
- Dynamic:Page 23
- stable / unstable: 斜率绝对值小于 1/大于 1.
- converges/diverges:
- oscillates/monotone: 斜率小于0/大于0
- IVP: initial value problem
18.1 2017 midterm1 q2
18.2 2016 final 1
注意读懂题目。题目难懂。万变不离其宗。 读不懂,不要紧。 老师还没有离(xie)奇(e)到,接着就过不下去了。
看看b问,就知道读不懂不影响b问以后的答题。
所以,遇到难题绕道走,就是了。完了,检查的时候,再回来。
不过,有时候。道理,我都懂, 可 还是过不好这一生/过不了这一题。
a问,其实是考203呢!350教科书上也有这个例子。就是为了说明difference equation在经济学中应用很普遍。
b问的答案,简直就是九阴真经啊。完全通用到所有的ODE问题。建议,抄下来,背诵。 很经典的回答方式。
回答这一题,大概20min。
18.3 2016 final q5
18.3 2016 midterm1 q1
19. Slides Chapter 19 - First Order Autonomous Nonlinear Difference Equations
- repeat and find the pattern
- converges or diverges,
- stabilize in the long run
19.1 2015 final q7
Nonlinear de usually do not have analytical solution
- steady state $\bar y$
- phase diagram
- 45度线
- 和45度线相交的地方,steady state
- 看斜率,$ \frac{d y_{t+1}}{d y_t} $ evaluated at SS
- Dynamic:Page 14
- stable / unstable: 斜率绝对值小于 1/大于 1.
- converges/diverges:
- oscillates/monotone: 斜率小于0/大于0
回答这一题,大概10min到20min
19.2 2015 final q4
- 注意总结规律,可以验算
19.3 2017 midterm1 5
19.4 2016 midterm1 q5
20. Second Order Autonomous Linear Difference Equations - Slides Chapter 20
- 分类: 2nd order Difference equations:
20.0 2017 midterm2 q1a
- What is the general form of the solution that must be guessed for a homogenous second order autonomous linear difference equation?
20.1 2016 mt2. Q4
- 基本情况
- 还是linear的,所以,区分homogeneous 和 particular solution两部分。
- The most pragmatic approach is to proceed by dividing the equation into its particular and homogenous parts, proceed with an informed guess and see where that leaves us!
- 记住 characteristic equation,如果我们guess We guess: $y_t = Cr^t$。
- 接着,就变成了解方程。
- It is a quadratic with two roots, known as the characteristic roots or eigenvalues of the difference equation. The roots are given by the quadratic formula: P8
- 三种情况,最后一种,最难,也最会考。但更可能考differential的。
- $(h + vi) = R^t (cos \theta + i sin \theta )^t$
- DeMoivre’s Theorem
- 就是看看 p18。
- Dynamic properties: Steady state
- Case 1: Distinct Real Roots
- Converges to its steady state only if $−1 < r1,r2 < 1$
- Diverges if it does not have a steady state, or if either 绝对值$r1 > 1$ or 绝对值$r2 > 1$.
- is monotone if both $r1,r2 > 0$
- oscillates if either $r1 < 0$ or $r2 < 0$
- 这些根本就记不住。
- 不要紧,如果已经解出了final complete solution。
- 一看就知道了。看看例题2017 midterm2 q4
- Case 3: with Complex Roots
- This is a wave function/ oscillates
- It converges to 0 if $0 < R < 1$
- It diverges to ∞ if $R > 1$
- It is constant and equal to 1 if a2 = 1
- (2016 mt2. Q4就是,看最后结果,也可以看出来)
- 解完的情况,记得看看p31的完整的例子。
- Case 1: Distinct Real Roots
这一题,大概要30min
20.2 2017 midterm2 q4
大概20min。清楚简单。 ————————————————
21. First Order Linear Differential Equation - Chapter 21
这一部分,是后面所有内容的基础。
21.1 2016 midterm2 q2
- separate
- integrate
Separable equation:
看看基本情况 http://www.wolframalpha.com/input/?i=dk%2Fdt+%3D+-0.1*k%2B+60,+k(0)+%3D+200
- 21.1.1 ODE classification:
- first-order linear ordinary differential equation
First Order Linear Differential Equation - Chapter 21
思路就是separate and integration.
- first-order linear ordinary differential equation
First Order Linear Differential Equation - Chapter 21
- 21.1.2 步骤, 就是 因为是linear , 所以先分为 homogeneous 和 particular solution两部分。原理,看论证。
- particular solution:steady states are given by a rate of change equal to zero:$ y˙ = 0$
- homogeneous: separate and integration
- Adding together the Particular and Homogenous Solutions
- 21.1.3 Dynamic Properties p18
- First Order Linear Autonomous Ordinary Differential Equations are ALWAYS MONOTONE
- If $a > 0$, $e^−at → 0$ as $t → ∞$. The variable converges to itssteady state and the steady state is stable.
- If $a < 0$, $e^−at → ∞$ as $t → ∞$. The variable diverges +∞ or −∞ depending on the sign of C
-
21.1.4 看看走势图和 phase diagram。
- 21.1.5 IVP (Initial value problem)
- 看看maple 的 de plot。 direction field。 满满都是箭头。就像人生,永远有那么多选择。我都不知道该怎么选了。不要紧。反正终点都是一样。
- 但是,一旦选定了起点,那么,就一条道走到黑。走到SS(steady state)
- 所以,你的问题,就是选好起点。不然,有些人就得,走得漫长一些。
DSolve[{k’[t] == 60 - 0.1 k[t], k[0] == 200}, k[t], t]
这一章,是所有后面的基础。
这一题,大概20min
22.First Order Nonlinear Differential Equation - Chapter 22
Nonlinear 一般都没有解析解。就画图,看看dynamics。只有特殊的BernoulliDifferentialEquation,靠着Bernoulli的聪明才智,我们才能把nonlinear变成linear的。后面就和1st order一样解决了, separately integrate。
22.1 2017 midterm q5
吃果果的送分题。
22.2 2016 mt2. Q3
- 22.2.1 ODE classification:
-
first-order nonlinear ordinary differential equation
-
- 22.2.2 solve nonlinear
- Our objective remains to characterize the evolution of $y(t)$ over time
- Most nonlinear differential equations DO NOT have a known algebraic solution $y(t) = G(t)$ (i.e. are not easily integrated) but even when they do, it is often useful to have a visual representation of their behavior
- We proceed with an analysis of the Phase Diagram of y。
- 看看maple, 画的捕捉之前的,和之后的phase diagram
- 类似于,382, 381, 打鱼,砍树,杀猪的故事。
- 22.2.3 Steady state 看看maple, 画的图。direction/vector field。
- Qualitatively analyze the diagram and the steady states
-
The Steady States The Steady States are the values $\bar y$ such that $\dot y = 0$
-
Identifying the general motion of the variable: $\dot y > 0$ indicates that the variable has a positive rate of time change. It is increasing over time
-
-
The Stability Properties of the Steady State
-
Formally, a linear approximation of $g(y)$, measured at the steady state
-
P13 If gradient $g(y) < 0$, the variable converges to the steady state. It is stable
-
If gradient $g(y) > 0$, the variable diverges away from the steady state. It is unstable
-
- nonlinear FIRST ORDER AUTONOMOUS differential equations cannot oscillate. These variables are always monotone.
- Qualitatively analyze the diagram and the steady states
- 22.2.4 solve nonlinear 的特殊方法
方法特殊, 回到我们的亲爱的 Bernoulli
Bernoulli’s equation: p’(t) = 0.14 p(t) - 0.0005 p(t)^2
主要思路,就是change of variables. 把nonlinear的问题,转换成linear的问题。
看p21,两边都除以 $p^n$, 就是把最 nonlinear的部分,除掉。
然后,设置
会发现,变成了linear的。那么问题就回到了第二题,first-order linear ordinary differential equation。解完x,再回到p就可以了。
题外话。如果,还是non autonomous。接着可以
什么是 [integration factor](http://mathworld.wolfram.com/IntegratingFactor.html)
这里,没有这么多问题。
这一题,大概30min。
这后面都是前面midterm没有考过的。 老司机也要注意开车了。
23. Second Order linear Differential Equation - Chapter 23
也算必考内容之一了。
23.1 2017 midterm2 q1b,c
- What is the general form of the solution that must be guessed for a homogenous second order autonomous linear Differential equation?
- In looking for a particular solution to $\ddot y + a_1 \dot y + a_2y = b$ , you find that there is no steady state. What is your next guess?
如果$a_2 =0$
后面还有 如果$a_1 = a_2 =0$
- Euler’s equation
23.2 2015 final q3
简单,明确。 非常典型。
- particular solution: steady state
- 如果没有就要猜 $y_t^p = kt$或者 $y_t^p = kt^2$
- Homogenous solution
- Guess $y(t) = A e^{rt} $
- 看看和difference equation的区别。
- characteristic function
- 解方程
- roots
- Distinct
- same
- Complex roots
- 记得要合并到最终结果
- 一看,就知道h起到了关键的指导作用。
- Guess $y(t) = A e^{rt} $
- Dynamic
- $h<0$, stable, converges
- IVP initial value problem
- 带入数字,解方程组
23.3 2017 midterm2 q3
这一题是特例。记不住特例的话,就麻烦。
第一种方法,把nonlinear变成 linear
第二种方法,就是
- Homogenous solution
- Guess $y(t) = A e^{rt} $
- characteristic function
- roots
- Distinct
- same
- Complex roots
- particular solution: steady state
- 如果没有就要猜 $y_t^p = kt$或者 $y_t^p = kt^2$
- Dynamic
- $h<0$, stable, converges
- IVP initial value problem
- 带入数字,接方程组
23.2 2016 final q6.b
答案写得很清楚。
这一题,大概30min。很多题,够大家刷了。
24. Systems of Differential Equations - Chapter 24
Visualization 可以看看我给ECON501同学,画的兔子和狐狸,system of differential equations. 一个是兔子的增长规律,一个是狐狸的增长规律,和最后的solution 兔子和狐狸
还有就是和老师slides类似的几个例子solution
24.1 Substitution method(必考)
24.1.2 2015 final q1 和q2
相对简单,先看看,熟悉一下。
先求导,再substitute。
- complete closed form solution
- Homogenous
- Guess the solution $k e^{rt}$。记得k这里是vector。
- 这里可以看一下什么是eigenvalues和eigenvectors. 看看linear algebra
- solve $A-Ir = 0$,
- eigenvalues, eigenvectors
- set $k_{11} = 1$
- 把k vector求出来。
- linear combination of two solutions 这一题,没有要求particular solution。
- Guess the solution $k e^{rt}$。记得k这里是vector。
- Homogenous
24.1.1 2016 final q6.1
-
Transform the system of two differential equations above into a single linear second order differential equation for $y$
24.2 Direct method: the system in matrix form(必考)
24.2.1 2016 final q2 q6
这一题非常典型。
答案也写得很完整,体现了老师的匠心,不知道是什么星座的。
- complete closed form solution
- Homogenous
- Guess the solution $k e^{rt}$。记得k这里是vector。
- 这里可以看一下什么是eigenvalues和eigenvectors.
- solve $A-Ir = 0$,
- eigenvalues, eigenvectors
- set $k_{11} = 1$
- linear combination of two solutions
- Guess the solution $k e^{rt}$。记得k这里是vector。
- particular
- set $\dot x = 0$ and $\dot y = 0$
- solve steady state. 解方程组
- complete solution
- Homogenous
- Analyze the dynamics of the model
- 画图,先从SS 和 isocline开始。
- 然后是四组上下左右箭头。
- 接着可以加上vector field。
- 每一点上的斜率
- properties: slides Chapter 24 page47:
- source: $0 < r1 < r2$
- sink: $r1 < r2 < 0$
- saddle point: $r_1>0$ and $r_2 <0$
- steady state point
- Isocline: set $\dot x = 0$ and $\dot y = 0$
- vector field : directions in 4 quadrant
- $ \frac{d \dot x}{y} >< 0 $ 往左? 往右?
- $\frac{d \dot y}{x} >< 0$ 往上? 往下?
- converges
- oscillate
- 画图,先从SS 和 isocline开始。
这一题估计要30+min。
24.2.2 2016 final q6
24.3 Non-Linear Systems of Differential Equations (有必要会)
24.3.1 2015 final q6
老师答案很完整,必须学习。
- Linear Approximation at the Steady States
- J is the Jacobian matrix of the linearized system
- 什么是Jacobian,
- 什么是eigenvalue 和 eigenvector of a matrix ,看看linear algebra
- 有了J以后,就成了一个linear system和前面一样做了。
- J 就成原来的A. 我们关注的是在SS附近的Dynamic
- 所以,要SS带入到J 里面,就成了我们的A.
- 接着就是解方程。
- The stability properties of the steady state can be determined as before, by finding the roots of J and referring to Table 1
- table 1 在slide24 p47.
- 记不住,也不要紧。看最终结果,可以猜出来。
- Dynamic和phase diagram就和linear system一样了。 这一题是超难的。估计40min。