ECON351 FINAL 2017

Posted by ECON爱好者 on March 31, 2017   econ351   Differential equations

重要的事情说三遍。

Practice exam, Practice exam, Practice exam

刷题,刷题,刷题

What do top students do differently? | Douglas Barton |
科学研究发现,

  1. not IQ
  2. not work hard
  3. do Practice exam

少年,你离学霸的距离,就是少刷了一道题。

计划

  1. 首先,把近些年 last final 做好。
  2. 然后,复习近些年的midterm。
  3. 最后,根据做错的题目,阅读slides。
  4. 考试的时候,永远从最简单的题目,做起。不会的,难得,就留到后面。交卷前,一定检查。

Homogenous and particular solution

练习例子

16.Integration - Chapter 16

16.1 2015 final q5

画图,帮助自己理解。

16.2 2016 MT2 Q1

Basic integration problem。 反求导。

Integrate[10000 - 10 Sqrt[q] - q/10, {q, 0, 16}]

Plot[10000 - 10 Sqrt[q] - q/10, {q, 0, 16}]


18. Slides Chapter 18 - First Order Autonomous Linear Difference Equations

the difference equation

  • solve
    • 不要背公式
    • 一步一步写到5步
    • 总结规律,写出close form
    • 转换成 $a^t(y_0 - \bar y) + \bar y$
  • steady state. $\bar y$
  • the stability properties of the variable and steady state
    • 和45度线相交的地方,steady state
    • 看斜率,$ \frac{d y_{t+1}}{d y_t} $ evaluated at SS
    • Dynamic:Page 23
      • stable / unstable: 斜率绝对值小于 1/大于 1.
      • converges/diverges:
      • oscillates/monotone: 斜率小于0/大于0
  • IVP: initial value problem

18.1 2017 midterm1 q2

18.2 2016 final 1

注意读懂题目。题目难懂。万变不离其宗。 读不懂,不要紧。 老师还没有离(xie)奇(e)到,接着就过不下去了。

看看b问,就知道读不懂不影响b问以后的答题。

所以,遇到难题绕道走,就是了。完了,检查的时候,再回来。

不过,有时候。道理,我都懂, 可 还是过不好这一生/过不了这一题。

a问,其实是考203呢!350教科书上也有这个例子。就是为了说明difference equation在经济学中应用很普遍。

b问的答案,简直就是九阴真经啊。完全通用到所有的ODE问题。建议,抄下来,背诵。 很经典的回答方式。

回答这一题,大概20min。

18.3 2016 final q5

18.3 2016 midterm1 q1


19. Slides Chapter 19 - First Order Autonomous Nonlinear Difference Equations

  • repeat and find the pattern
  • converges or diverges,
  • stabilize in the long run

19.1 2015 final q7

Nonlinear de usually do not have analytical solution

  • steady state $\bar y$
  • phase diagram
    • 45度线
    • 和45度线相交的地方,steady state
      • 看斜率,$ \frac{d y_{t+1}}{d y_t} $ evaluated at SS
  • Dynamic:Page 14
    • stable / unstable: 斜率绝对值小于 1/大于 1.
    • converges/diverges:
    • oscillates/monotone: 斜率小于0/大于0
      回答这一题,大概10min到20min

19.2 2015 final q4

  • 注意总结规律,可以验算

19.3 2017 midterm1 5

19.4 2016 midterm1 q5


20. Second Order Autonomous Linear Difference Equations - Slides Chapter 20

  • 分类: 2nd order Difference equations:

20.0 2017 midterm2 q1a

  • What is the general form of the solution that must be guessed for a homogenous second order autonomous linear difference equation?

20.1 2016 mt2. Q4

  • 基本情况
  • 还是linear的,所以,区分homogeneous 和 particular solution两部分。
    • The most pragmatic approach is to proceed by dividing the equation into its particular and homogenous parts, proceed with an informed guess and see where that leaves us!
  • 记住 characteristic equation,如果我们guess We guess: $y_t = Cr^t$。
    • 接着,就变成了解方程。
    • It is a quadratic with two roots, known as the characteristic roots or eigenvalues of the difference equation. The roots are given by the quadratic formula: P8
    • 三种情况,最后一种,最难,也最会考。但更可能考differential的。
      • $(h + vi) = R^t (cos \theta + i sin \theta )^t$
      • DeMoivre’s Theorem
    • 就是看看 p18。
  • Dynamic properties: Steady state
    • Case 1: Distinct Real Roots
      • Converges to its steady state only if $−1 < r1,r2 < 1$
      • Diverges if it does not have a steady state, or if either 绝对值$r1 > 1$ or 绝对值$r2 > 1$.
      • is monotone if both $r1,r2 > 0$
      • oscillates if either $r1 < 0$ or $r2 < 0$
      • 这些根本就记不住。
      • 不要紧,如果已经解出了final complete solution。
      • 一看就知道了。看看例题2017 midterm2 q4
    • Case 3: with Complex Roots
      • This is a wave function/ oscillates
      • It converges to 0 if $0 < R < 1$
      • It diverges to ∞ if $R > 1$
      • It is constant and equal to 1 if a2 = 1
      • (2016 mt2. Q4就是,看最后结果,也可以看出来)
    • 解完的情况,记得看看p31的完整的例子。

这一题,大概要30min

20.2 2017 midterm2 q4

大概20min。清楚简单。 ————————————————

21. First Order Linear Differential Equation - Chapter 21

这一部分,是后面所有内容的基础。

21.1 2016 midterm2 q2

  • separate
  • integrate

Separable equation:

看看基本情况 http://www.wolframalpha.com/input/?i=dk%2Fdt+%3D+-0.1*k%2B+60,+k(0)+%3D+200

  • 21.1.1 ODE classification:
  • 21.1.2 步骤, 就是 因为是linear , 所以先分为 homogeneous 和 particular solution两部分。原理,看论证。
    • particular solution:steady states are given by a rate of change equal to zero:$ y˙ = 0$
    • homogeneous: separate and integration
    • Adding together the Particular and Homogenous Solutions
  • 21.1.3 Dynamic Properties p18
    • First Order Linear Autonomous Ordinary Differential Equations are ALWAYS MONOTONE
    • If $a > 0$, $e^−at → 0$ as $t → ∞$. The variable converges to itssteady state and the steady state is stable.
    • If $a < 0$, $e^−at → ∞$ as $t → ∞$. The variable diverges +∞ or −∞ depending on the sign of C
  • 21.1.4 看看走势图和 phase diagram。

  • 21.1.5 IVP (Initial value problem)
    • 看看maple 的 de plot。 direction field。 满满都是箭头。就像人生,永远有那么多选择。我都不知道该怎么选了。不要紧。反正终点都是一样。
    • 但是,一旦选定了起点,那么,就一条道走到黑。走到SS(steady state)
    • 所以,你的问题,就是选好起点。不然,有些人就得,走得漫长一些。

DSolve[{k’[t] == 60 - 0.1 k[t], k[0] == 200}, k[t], t]

这一章,是所有后面的基础。

这一题,大概20min


22.First Order Nonlinear Differential Equation - Chapter 22

Nonlinear 一般都没有解析解。就画图,看看dynamics。只有特殊的BernoulliDifferentialEquation,靠着Bernoulli的聪明才智,我们才能把nonlinear变成linear的。后面就和1st order一样解决了, separately integrate。

22.1 2017 midterm q5

吃果果的送分题。

22.2 2016 mt2. Q3

  • 22.2.1 ODE classification:
  • 22.2.2 solve nonlinear
    • Our objective remains to characterize the evolution of $y(t)$ over time
    • Most nonlinear differential equations DO NOT have a known algebraic solution $y(t) = G(t)$ (i.e. are not easily integrated) but even when they do, it is often useful to have a visual representation of their behavior
    • We proceed with an analysis of the Phase Diagram of y。
    • 看看maple, 画的捕捉之前的,和之后的phase diagram
    • 类似于,382, 381, 打鱼,砍树,杀猪的故事。
  • 22.2.3 Steady state 看看maple, 画的图。direction/vector field。
    • Qualitatively analyze the diagram and the steady states
      • The Steady States The Steady States are the values $\bar y$ such that $\dot y = 0$

      • Identifying the general motion of the variable: $\dot y > 0$ indicates that the variable has a positive rate of time change. It is increasing over time

    • The Stability Properties of the Steady State

      • Formally, a linear approximation of $g(y)$, measured at the steady state

      • P13 If gradient $g(y) < 0$, the variable converges to the steady state. It is stable

      • If gradient $g(y) > 0$, the variable diverges away from the steady state. It is unstable

    • nonlinear FIRST ORDER AUTONOMOUS differential equations cannot oscillate. These variables are always monotone.
  • 22.2.4 solve nonlinear 的特殊方法

方法特殊, 回到我们的亲爱的 Bernoulli

Bernoulli’s equation: p’(t) = 0.14 p(t) - 0.0005 p(t)^2

什么是 Bernoulli’s equation

主要思路,就是change of variables. 把nonlinear的问题,转换成linear的问题。

看p21,两边都除以 $p^n$, 就是把最 nonlinear的部分,除掉。

然后,设置

会发现,变成了linear的。那么问题就回到了第二题,first-order linear ordinary differential equation。解完x,再回到p就可以了。

题外话。如果,还是non autonomous。接着可以

什么是 [integration factor](http://mathworld.wolfram.com/IntegratingFactor.html)

这里,没有这么多问题。

Mathematica

这一题,大概30min。


这后面都是前面midterm没有考过的。 老司机也要注意开车了。


23. Second Order linear Differential Equation - Chapter 23

也算必考内容之一了。

23.1 2017 midterm2 q1b,c

  • What is the general form of the solution that must be guessed for a homogenous second order autonomous linear Differential equation?
  • In looking for a particular solution to $\ddot y + a_1 \dot y + a_2y = b$ , you find that there is no steady state. What is your next guess?

如果$a_2 =0$

后面还有 如果$a_1 = a_2 =0$

  • Euler’s equation

23.2 2015 final q3

简单,明确。 非常典型。

  • particular solution: steady state
    • 如果没有就要猜 $y_t^p = kt$或者 $y_t^p = kt^2$
  • Homogenous solution
    • Guess $y(t) = A e^{rt} $
      • 看看和difference equation的区别。
    • characteristic function
      • 解方程
    • roots
      • Distinct
      • same
      • Complex roots
        • 记得要合并到最终结果
        • 一看,就知道h起到了关键的指导作用。
  • Dynamic
    • $h<0$, stable, converges
  • IVP initial value problem
    • 带入数字,解方程组

23.3 2017 midterm2 q3

这一题是特例。记不住特例的话,就麻烦。

第一种方法,把nonlinear变成 linear

第二种方法,就是

  • Homogenous solution
    • Guess $y(t) = A e^{rt} $
    • characteristic function
    • roots
      • Distinct
      • same
      • Complex roots
  • particular solution: steady state
    • 如果没有就要猜 $y_t^p = kt$或者 $y_t^p = kt^2$
  • Dynamic
    • $h<0$, stable, converges
  • IVP initial value problem
    • 带入数字,接方程组

23.2 2016 final q6.b

答案写得很清楚。

这一题,大概30min。很多题,够大家刷了。


24. Systems of Differential Equations - Chapter 24

Visualization 可以看看我给ECON501同学,画的兔子和狐狸,system of differential equations. 一个是兔子的增长规律,一个是狐狸的增长规律,和最后的solution 兔子和狐狸

还有就是和老师slides类似的几个例子solution

24.1 Substitution method(必考)

24.1.2 2015 final q1 和q2

相对简单,先看看,熟悉一下。

先求导,再substitute。

  • complete closed form solution
    • Homogenous
      • Guess the solution $k e^{rt}$。记得k这里是vector。
        • 这里可以看一下什么是eigenvalues和eigenvectors. 看看linear algebra
      • solve $A-Ir = 0$,
        • eigenvalues, eigenvectors
        • set $k_{11} = 1$
        • 把k vector求出来。
      • linear combination of two solutions 这一题,没有要求particular solution。

24.1.1 2016 final q6.1

  • Transform the system of two differential equations above into a single linear second order differential equation for $y$

24.2 Direct method: the system in matrix form(必考)

24.2.1 2016 final q2 q6

这一题非常典型。

答案也写得很完整,体现了老师的匠心,不知道是什么星座的。

  • complete closed form solution
    • Homogenous
      • Guess the solution $k e^{rt}$。记得k这里是vector。
        • 这里可以看一下什么是eigenvalues和eigenvectors.
      • solve $A-Ir = 0$,
        • eigenvalues, eigenvectors
        • set $k_{11} = 1$
      • linear combination of two solutions
    • particular
      • set $\dot x = 0$ and $\dot y = 0$
      • solve steady state. 解方程组
    • complete solution
  • Analyze the dynamics of the model
    • 画图,先从SS 和 isocline开始。
      • 然后是四组上下左右箭头。
      • 接着可以加上vector field。
      • 每一点上的斜率
    • properties: slides Chapter 24 page47:
      • source: $0 < r1 < r2$
      • sink: $r1 < r2 < 0$
      • saddle point: $r_1>0$ and $r_2 <0$
    • steady state point
    • Isocline: set $\dot x = 0$ and $\dot y = 0$
    • vector field : directions in 4 quadrant
      • $ \frac{d \dot x}{y} >< 0 $ 往左? 往右?
      • $\frac{d \dot y}{x} >< 0$ 往上? 往下?
    • converges
    • oscillate

这一题估计要30+min。

24.2.2 2016 final q6

24.3 Non-Linear Systems of Differential Equations (有必要会)

24.3.1 2015 final q6

老师答案很完整,必须学习。

  • Linear Approximation at the Steady States
  • J is the Jacobian matrix of the linearized system
  • 有了J以后,就成了一个linear system和前面一样做了。
    • J 就成原来的A. 我们关注的是在SS附近的Dynamic
    • 所以,要SS带入到J 里面,就成了我们的A.
    • 接着就是解方程。
  • The stability properties of the steady state can be determined as before, by finding the roots of J and referring to Table 1
    • table 1 在slide24 p47.
    • 记不住,也不要紧。看最终结果,可以猜出来。
  • Dynamic和phase diagram就和linear system一样了。 这一题是超难的。估计40min。